Polymerization Systems Engineering – A Literature Review
L . T . Fan and J . S . Shastry
Institute for Systems Design and Optimization
and Department of Chemical Engineering.
Taken from:
Journal of Polymer Science Macromolecular Reviews, Volume 7, Issue 1 (p 155-187)
INTRODUCTION
Man-made synthetic polymers are widely employed as substitutes for metal, wood, stone, glass, paper and a variety of macromolecular substances. These applications of polymer require specific properties such as toughness, flexibility, insulation, etc., which are related to the molecular weight, structure, molecular-weight distribution, and copolymer composition of the product polymer. These ultimate properties of the polymer are largely acquired in the reactor. The reactor must remove the heat of polymerization; provide necessary residence time; provide uniform mixing for good temperature control and reactor homogeneity; control the degree of backmixing in continuous polymerizations; and provide surface exposure (Schlegel [1972]). In addition, the reactor system must be amenable to control and be stable under normal operation. Polymerization systems engineering is a branch of systems engineering that deals with polymerization reactor systems ; this field of systems engineering encompasses analysis, modeling, dynamic and stability studies, design (or synthesis) and control of polymerization reactor systems. While many papers have been published on specific aspects of polymerization systems engineering, no comprehensive review on this subject is available. The purpose of this work is to review in general the research in the area of polymerization systems engineering and, in particular, the research on analysis, selection, design, control and optimization of polymerization reactors.
It is hoped that this review will serve as a supplement to the two related reviews published recently. ‘The one by Lenz [1970] reviewed the works on “applied polymerization reaction kinetics” and is generally concerned with the study of the “chemistry” of polymerization reactions and their rates. It also included work related to different initiation systems and different methods of polymerization. In contrast,
No comments:
Post a Comment